

A Convergent Synthetic Approach to Activity Based Sensing of Ethylene Gas

Sara McCormack

Department of Chemistry and Biochemistry

Colorless gas, naturally produced by plants Relatively small, unreactive

Major plant hormone responsible for:

- Seed germination
- Fruit ripening
- Dormancy
- Flower production
- Root hair development

Agricultural applications require measurements to be:

- Precise
- Accurate
- Fast
- Selective
- Sensitive
- Applied *in vivo*

Project Background: Synthetic Ethylene Probes

Project Background: Synthetic Ethylene Probes

<u>Aim Two</u>

Structural Modifications to Increase Quantum Yield

Quantum Yield is a measure of fluorophore brightness

Brighter fluorophores require less material:

- Cost effective
- Better imaging *in vivo*

Synthetic Route

 $R=H, CH_3, CF_3, OCH_3$

Probe Precursor

Probe

Results: Unsubstituted Probe vs Methoxy Substituted Probe

Aim One

Linear Synthesis: Lower yielding, difficult to change

Convergent Synthesis: Higher yielding, more modular **More desirable**

<u>Aim Two</u>

Structural modifications result in greater fluorescence due to steric constraints

- Greater fluorescence = increased quantum yield
- Higher QY results in more precise measurements in imaging experiments **More desirable**

Morgan Schneider

Ruthie Cicotte

Roman Shrestha

Dr. Brian Michel

Undergraduate Research Center

